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Dynamical evolution of two-dimensional 
unstable shear flows 

By N. J. ZABUSKY A N D  G. S .  DEEM 
Bell Telephone Laboratories, Whippany, N.J. 07981 
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A direct numerical integration of the time-dependent, incompressible Navier- 
Stokes equations is used to treat the nonlinear evolution of perturbed, linearly 
unstable, nearly parallel shear flow profiles in two dimensions. Calculations have 
been made for infinite (inviscid) and finite Reynolds numbers. The latter results 
are compared with laboratory measurements of Sat0 & Kuriki for wakes behind 
thin flat plates, and many of the detailed features are in excellent agreement, 
including mean flow profiles with ‘overshoot ’ development, first harmonic 
energy profiles with off-axis nulls, and first harmonic phase profiles, The linear 
instability saturates by forming a vortex street consisting of elliptical vortex 
pairs. The solutions are followed for times up to eleven linear exponentiation 
times of the unstable disturbance. A new low-frequency non-linear oscillation 
is found, which explains the features of the above experiment, including the 
nearly periodic phase inversions in the first harmonic component of the longitu- 
dinal velocity. It results from a nutation of the elliptical vortices with respect to 
the mean flow direction. Inertial range spectral energy properties are also 
examined. Inviscid solutions have large wave-number spectral energies obeying 
the approximate power law, Ek N k-a, where p lies between 3 and 4. 

1. Introduction 
In  recent years, analysts have spent much effort attempting to understand the 

development of unstable two-dimensional flows described by the Navier-Stokes 
equations. Sat0 & Kuriki (1961) and Mattingly (1968) have performed laboratory 
experiments which characterize the development of unstable two-dimensional 
wakes. There is still a large gap between approximate analytical solutions of the 
equations and laboratory measurements, because of the usual difficulties in 
solving nonlinear dynamical problems. 

In  this paper we describe numerical finite-difference solutions of the two- 
dimensional incompressible Navier-Stokes equations (initial-boundary-value 
problems). These solutions help to close the analytical/experimental gap. We 
present results which have many features of the Sato-Kuriki wake experiment, 
including development of a double row of elliptical vortices, mean flow evolution 
including back-flow, and first harmonic ‘ cross-stream ’ amplitude and phase 
development. Sufficient informationispresentedto aidanalystsinevaluating their 
simplifying assumptions, and to provide guidance for future analytical directions. 

23 F L M  47 
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For example, in the case of a Gaussian wake-profile excited by one mode, after 
more than 11 exponentiation times the most unstable linear mode does not become 
stationary in time, as suggested by Landau (Landau 1944; Landau & Lifschitz 
1959, p. 104). Instead, a long-time, nearly periodic behaviour develops, and is 
associated with the ‘nutation’ of vortices with respect to the mean flow. This 
new phenomenon, and the nutation frequency, correlate with experimentally 
observed characteristics of two-dimensional wakes. 

These computational results are being studied in an analytic/computational/ 
experimentallsynergetic (Zabusky 1966, p. 223) working mode. This ACES 
approach provides us with a deeper insight into the nonlinear dynamical processes 
involved. 

2. Difference equations, boundary and initial conditions 

We solve the time-dependent, incompressible Navier-Stokes equations, 

2.1 Difference equations 

8,U+V.(UOU) = -Vp+vV2u7 

v .u  = 0, 

FIGURE 1. Lattice points used in the computation of urn+&, and 
wU,,,+f. a, u ;  x ,  v; 0, P. 

and v = P Z ,  (2.4) 

The operation o is a dyadic tensor product, and u is the constant viscosity. 
We use a staggered spatial lattice of mesh points (Welch et al. 1966), indicated 

in figure 1. urn+$, and urn, n++ denote values of the velocity components defined, 
respectively, on the x and y lattice cell boundaries. pm, denotes the pressure at  
the centre of cell (m, n). Values of the velocities at cell centres (or corners) are 
defined as averages, e.g. 
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axPrn,n = (Prn+~,n-Prn,n)lAx~ (2.6) 

8, and 8, denote one-sided difference operators 

where Ax and A y  are the constant lattice spacings in the x and y directions. 
Keeping time continuous for the moment, we replace the x component of (2.1), 
centred at  (m + +, n), by 

aturn+*, n + ax(u2,n) + adum+q, ntvm++. n-+) = - azpm, n + V'J'zumd, n)-  (2.7) 

We treat the y component of (2.1), centred at  (m,n++), similarly. Figure 1 
shows the lattice positions of u, v andp involved in the equations for the temporal 
advancement of am+&, 
centred at (m, n), by 

and vrn, n++, respectively. Finally, we replace (2.2), 

(2.8) s z u m - ,  n + &yVrn, n-5 = 0. 

The scheme (2.7) and (2.8) reduces numerical aliasing from that of a more 
natural, but less compact representation, where u, v and p are all defined at the 
Same point (m, n). The above scheme also retains two exact integral conservation 
properties of the Navier-Stokes equations. For simple (e.g. periodic) boundary 
conditions, it follows that 

(conservation of momentum) and 

at c (uk++, n + vk, n++) 
m, n 

= - v C [(8xUrn++,n)' + (ayum++, n)' + Caxvrn. n++Y + (ayvrn, n++)'I (2.10) 
m, n 

(conservation of energy for v = 0). That is, over the domain D of N lattice points 
the mean square velocity or energy E,  

(2.11) 

is 'semi-conserved' by the scheme (2.7): the nonlinear, inertial forces in (2.7) do 
not contribute to the dissipation of E. This is a discrete analogue of the corre- 
sponding property for the exact Navier-Stokes equations (2.1). 

We discretize time derivatives in (2.7) using a combination of schemes: 
a centred or 'leap-frog' time difference for convective terms and a DuFort- 
Frankel representation for viscous terms (Richtmyer & Morton 1967, p. 176). 
The latter guarantees numerical stability of the viscous terms. The inviscid finite 
difference equations are second-order accurate in Ax,  Ay and At. We recognize 
that the DuFort-Frankel scheme is first-order accurate, but we have used it only 
when the viscosity coefficient is small (Reynolds number R 2 750). The viscous 
terms in the equations smooth and only slightly perturb the amplitudes of the 
long-wavelength features of our solutions. This fact is the result of computer runs 
with v = 0 and v finite and leads us to the physical conclusion that the large-scale 
phenomena are inviscid. 

We advance u in time as follows: 
(i) We obtain an intermediate velocity field U* from the time discretized 

version of (2.7), dropping the pressure term. 
23-2 
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(ii) We compute a pressurep at time t from the five-point discretized version of 
Poisson's equation in two dimensions, 

The factor, 
1 1 1  p = 2At - + V  (- Ax2 +-) Ay2 ' 

(2.12) 

(2.13) 

arises from the DuFort-Frankel treatment of viscous terms in step (i). In  the 
following, we restrict D to be a rectangular domain and impose periodic 
boundary conditions. This enables us to solve (2.12) exactZy and quickly, using 
fast discrete Fourier transform techniques (Hockney 1965; Williams 1969). This 
part of the complete algorithm is essentially new and differs from those of others 
(Welch et al. 1966; Chorin 1968), who use iterative methods to solve (2.12). 
However, our method cannot presently deal wit,h the complicated boundary 
conditions treated by Harlow & Welch (1965). 

(iii) Finally, we compute u at time (t + At) from 

(2.14) 

and a similar expression for vni, n++. 

From (2.12) and (2.14) the incompressibility condition (2.8) is identically 
satisfied for all positive times. The complete algorithm remains quite stable for 
At of the order min (Ax, Ay)/lul or less. In a future publication, we will discuss 
properties of this algorithm, particularly how solutions depend upon lattice size 
and Reynolds number. 

Although the energy E is semi-conserved by the above scheme (with v = 0) ,  
the same is not true for higher-order invariants of the two-dimensional Navier- 
Stokes equations (2.1) and (2.2). Recall that if the vorticity w is introduced, 

w = - a,u + axv = - v~$-, (2.15) 

where $ is the stream function (u = a,$-, v = -ax$),  then after taking the curl 
of (2.1) and applying (2.2) we obtain 

a , w + u . v w  = vv2w. (2.16) 

Equation (2.16) shows that, if v = 0 and simple boundary conditions are chosen, 
then any functional of w over a subdomain moving with the fluid is conserved. 
For the above difference scheme, the mean-square vorticity, or 'enstrophy ', 

(2.17) 

is not semi-conserved, using the obvious finite difference definition of w centred 
at  ceIl corners (m + i, n + t )  

urn+&, n++ = - av~rn+&, n + azvm, nt4. (2.18) 

Variations of the enstrophy therefore provide a gross assessment of the quality 
of solutions in the inviscid case. (For example, see figure 13.) 
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2.2. Initial conditions 

Two linearly unstable initial conditions were chosen to simulate nearly parallel 
shear flows: a Gaussian mean profile with a single excited eigenmode and a 
Bickely mean profile with five excited modes. That is, at t = 0, 

u(x, y, 0) = [U(y) +u(l)(x, y, 01, v%, y, 0)lt (2.19) 

where 

The experimental mean wake profile a short distance downstream of a thin flat 
plate is approximately 

e = max lu(l)(x,y, O)I/max I U(y)I Q 1. (2.20) 

W Y )  = U - v,o exp f - y2/A2) (2.21) 

(Sato & Kuriki 1961). The mean profile of a two-dimensional jet is approximately 

U(Y) = v,osech2 ( y l 4  (2.22) 

(Sato 1960). In our computations, we replace U(y) by a profile U@)(y), which is 
periodic with respect to a finite lateral interval L, satisfying 

L, 9 211; (2.23) 

and we restrict -L$ 6 y 6 LJ2. (2.24) 

Specifically, (2.25) 
m=--00 

which is very close to U(y) in -L,/2 6 y < L,/2, provided (2.24) holds. 
The perturbing velocity u(l) is periodic in x, and is composed of symmetric 

eigenfunctions corresponding to unstable wave-numbers K of the Rayleigh 
equation (Drazin & Howard 1966). 

(2.26) 

$ ( O )  = 1, $’(O)  = $‘(L,/2) = 0. 

Here 9 is related to u(l) through 

u(1) = (a, ?p, - a, ?p), (2.27) 

yY1) = Re {&y) exp [ i ( ~ ( x  - ct) + 691). (2.28) 

The eigenfunction boundary conditions in (2.26) are appropriate for periodic 
#(y) symmetric about y = 0. Equation (2.26) is obtained by inserting (2.19) into 
(2.1) and retaining terms of order e. Here 8 is an arbitrary constant phase shift, 
and K is the longitudinal or ‘downstream ’ wave-number. The constant c = c, + ic, 
is the complex phase velocity corresponding to wave-number K. The unstable 
disturbances have growth rates KC( > 0. We make no use of the antisymmetric 
eigenfunctions of (2.26); for given K ,  they have smaller growth rates than the 
corresponding symmetric eigenfunctions (Drazin & Howard 1966). 
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2.3. Boundary conditions 

Figure 2 schematizes the flat-plate wake experiment, and helps us justify periodic 
boundary conditions on 0 < x < L,, - 4 1 2  < y Q LJ2 as relevant to the experi- 
ment. A quantity (element) of fluid encompassing two low-pressure features 
leaves the end of the plate, undergoes a slight adjustment, and assumes a mean 
longitudinal velocity profile, as shown in the first box in the lower half of the 
figure. This unstable mean profile spreads as it moves downstream and develops 
into vortex pairs, shown in the second box. 

FIGURE 2. Schematic of two-dimensional flat plate wake and trajectories 
of primary vortex pairs in (z, t )  space. 

I n  order to describe accurately the development of small-scale structures, 
given the size and speed limitations of present-day computers, we cannot repre- 
sent true downstream distance behind the plate by a spatial co-ordinate (cf. 
Fromm & Harlow 1963). To compare our results with experiment, we make a 
Taylor-like hypothesis (frozen flow), relating downstream distance to the com- 
putation time t .  This correspondence is indicated schematically in the upper 
half offigure 2. Subsequent fluid elements originate at  different times and traverse 
nearly parallel paths in (x, t )  space. 

Periodicity in the cross-stream direction is a reasonable approximation when- 
ever condition (2.23) is satisfied, since the flow is observed a posteriori to remain 
laterally confined. If (2.23) is not satisfied, periodicity in the y direction is more 
appropriate to a description of the wake behind a uniformly spaced array of 
flat plates. 

By imposing downstream periodic boundary conditions on a fluid element of 
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length L,, we set a lower bound on the smallest wave-number (largest scale) 
which can develop. It is clear that we must take at  least 

(2.29) 

where K,,, is the most unstable wave-number according to linear theory. 
Physical systems which tend to develop subharmonics, such as a separated shear 
layer (Browand 1966)) require that L, be at  least a factor of two larger than 
(2.29). Quite generally, energy in two-dimensional, incompressible fluids tends 
to flow into the lowest modes available (Batchelor 1953, p. 186; Fjortoft 1953). 
This phenomenon will be seen in Q 4, in connexion with the evolution of a Bickely 
profile perturbed with five unstable modes. We therefore expect the experi- 
mentally observed L, to increase slowly downstream, contrary to the assump- 
tions of the present paper, where L, is fixed. Moreover, Gaster (1968) and 
Mattingly (1968) have shown that experimental spatially amplified, and the 
present temporally amplified, disturbances cannot be accurately related by a 
linear transformation between time and space co-ordinates, using either the 
phase velocity c, or the group velocity of the disturbance. For these and other 
reasons, complete quantitative agreement between our results and the experi- 
mental results of Sat0 & Kuriki should not be expected. In  Q 3, however, we 
find that the long time, fully nonlinear features of our calculations are in 
excellent qualitative agreement with experiment. 

The longitudinal periodicity restricts the temporal ( K  real) linear stability 
analysis to discrete modes, 

K = 2rrk/L, ( k  = 1,2,  ...). (2.30) 

We shall refer to k as the mode number. The transverse periodic boundary 
conditions slightly modify the linear eigenvalues and eigenfunctions of ( 2.26), 
depending on the value of L,. This effect is shown in figures 3 (a )  and 4 (a )  for 
the Gaussian and Bickely profiles, respectively. Here c, and  KC^ are, respectively, 
the phase velocities and growth rates of the symmetric eigenfunctions. Experi- 
mental c, and  KC^ from Sat0 & Kuriki (1961) are also shown in figure 3 (a) .  The 
experimental phase velocities are in excellent agreement, whereas the experi- 
mental growth rates (filled circles) show about a 40 yo deviation from the com- 
puted results. 

2.4. Computational modeling of experiment 

Figure 5 is a schematic showing the various choices made in performing a com- 
putation. The left side of the first line relates to the physical world, and the right 
to the numerical. 

Given U(y), we can specify only the arbitrary amplitudes E and phases 8 of the 
perturbing eigenfunctions. For given K satisfying (2.29), we first compute sym- 
metric eigenfunctions q5 = q5,+iq5i and eigenvalues c from (2.24), according to 
the two-point boundary-value problem (2.26) (see appendix, Q (i)). Figure 3 
gives results for the Gaussian wake profile with L, = 16. Here the values U, = 1, 
U,, = 0.692 and A = 1.2011 coincide with those used by Sat0 & Kuriki (1961). 
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Figure 3 (b) shows a typical symmetric eigenfunction for K = 0.75 (K,,, = 0-7893). 
Results for the Bickely profile with U, = 1 and A = 1 are shown in figure 4. 

Table 1 gives detailed properties of the eigenfunctions used in subsequent 
calculations with (2.1) and (2.2). Note that Sat0 & Kuriki (1961) computed 
c, = 0-692 and KC( = 0.140 for K = 0.832. The corresponding values 0.701 and 

K 

Y 
FIGURE 3. Linear eigenvalues and eigenfunotions for the y-periodic Gaussian profile : 
U, = 1 ;  U,, = 0.692; A = 1.2011. (a) Linear dispersion relation (inviscid). -, L, = 16; 
_ - -  , 12. Sat0 & Kuriki: 0, cr; 0 ,  KC+ (i) K = 0.7893, c, = 0.7084, ct = 0.1363. (b) Real 
and imaginary parts of the K = 0.75 symmetric eigenfunction L, = 16. c ,  = 0.7158, 

0.107 from table 1 (L, = 12) are invariant as Lv -+ 00. This discrepancy probably 
resulted because Sat0 & Kuriki applied their eigenfunction boundary conditions, 
which are appropriate for L, = 00, too near the flow centre. 

Table 2 gives amplitudes E ,  and phases 8, of velocity perturbations used in four 
calculations to be discussed below. In  practice, we construct an initial perturba- 
tion stream function at cell corners (m + Q, n + Q) according to 

$m++,n++ = F~k.Re{Qn++ex~ Ci(2nkmNi1+ 01c)I19 (2.31) 

ci = 0.1430. 
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FIGURE 4. Linear eigenvalues and eigenfunctions for the y-periodic Bickely pro.file : 
Uo = 1, A = 1. (a) Linear dispersion relation (inviscid). -, L, = a; - - -, 10; -.-, 
6. (b) Real and imaginary pads of the K = 0.9 symmetric eigenfunction L, = 10. 
C, = 0.4508; C/ = 0.1789. 

Mode 
RUII Profle no. k K Cr KC j A L, L, 2 W ,  Uo U,, 
35 Gaussian 1 0.832 0.70058 0.10725 1.2011 7.5519 12.0 0-20 1.0 0.692 
38 Gaussian 1 0.832 0.70058 0.10725 1.2011 7.5519 12.0 0.20 1.0 0.692 
39 Gaussian 1 0.75 0.71576 0.10726 1.2011 8.3776 16.0 0.15 1.0 0.692 

34 Biclrely 1 0.3 0.25992 0.08589 1.0 20.944 10.0 0.20 0 1-0 
- - - -  2 0.6 0.36423 0.14273 - - 

3 0.9 0.45078 0.16101 - - 
4 1.2 0.51944 0.14491 - - 
5 1.5 0.57837 0.10274 - - - - - -  

- - - -  
- - - -  

TDLE 1. Growth rates (KCJ and phase velocities (c,) of 
symmetric eigenfunctions, y-periodic profiles 
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where N, = L,/Ax and Nu = L,/Ax are even (the total number of lattice points 
N = N,N, in (2.11) and (2.17)). The initial u1, defined on the staggered lattice 

1. Mean profile 

(wave-number, amplitude) 

B 

c 

D 

E 

F 

Numerical choices 
1. Number and width of 

lattice intervals 
2. Time step 
3. Run duration 

(2.32) 

Two-point boundary value 
solver 

(periodic in y )  
I 

I 
Check initial 
growth rates 
and phase 
velocities 

I Eigen functions I Eigenyalues I 

Stream function, and velocity 
initialization 

(periodic in x and y )  
lb, Yt O),U(X, Y,  0) 

2D Navier-Stokes 
k i t e  difference solver 

Visualization 
1. Velocity plots 
2. Contour plots 
3. Cross-stream 

quantities I Energyspectra 

FIGURE 5. Flow chart for two-dimensional Navier-Stokes solver. 

Mean dohot 
Mode Exp. time Amplitude Phase Energy flow energy 

Run no. k tE €k ek Ek Eo 
35 1 9.3240 0.15 0 0.0012656 0.030036 
38 1 9.3240 0.05 0 0.000 140 1 0.030036 
39 1 9.3231 0.10 0 0.0003888 0.022527 
34 1 11.643 0.069870 3 ~ / 5  0~0002000 0.066667 

- 2 7.0062 0.061494 TI5 0*0002000 
3 6.2108 0.054023 0 0~0002000 
4 6.9008 0.047985 4 ~ / 5  0~0002000 
5 9.7333 0.042980 2 ~ / 5  0~0002000 - 

- 
- 

TABLE 2. Amplitudes, phases and energies of perturbed, symmetric eigenfunctions 
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satisfies (2.8) identically. The sum in (2 .31)  is extended over all initially excited 
mode numbers k with non-vanishing ck. 

Table 2 also gives modal energies Ek of the initial velocity field defect (u - Uo, v). 
We define transverse averages of the one-dimensional, longitudinal modal 
energies by 

(cf. appendix, 3 (ii)). Then 

Eo = eo- u& EN& = e ~ J 2 ,  

and Ek = 2ek  (k = 1, ..., $Nx- 1 ) .  

The sum of the Ek gives the total energy E in the velocity field defect, 

(2.34) 

(2.35) 

(2.36) 

Note that, since Ek < Eo for k > 1 in the runs of table 2, the initial perturbation 
energies are small. 

No. Lattice Total 
perturbing size Comp. exp. times 

Run modes N , x N ,  Ax Ay A/Ay At cycles t/$E R 
35 1 1 2 8 ~  128 0.05900 0.09375 12.8 0.05 1200 6.436 co 
38 1 6 4 ~  64 0.11800 0.18750 6.4 0.05 1200 6.436 co 
39 1 1 2 8 ~  128 0.06545 0.12500 9.6 0.05 2000 10.726 750.0 

34 5 6 4 ~  64 0-32725 0.15625 6.4 0.05 600 4.830 co 

TABLE 3. Run discretization parameters 

Table 3 gives information concerning the spatial and temporal discretization 
for the various runs. The lattice interval Ax is determined from Ax = Lx/Nx and 
Ay is chosen small with respect to A, the mean velocity lateral scale parameter 
(see table 3, column A/Ay, which gives the number of lattice intervals in an initial 
lateral scale). The time step At in each run was chosen to be 0.05. A heuristic 
necessary condition for the numerical stability of the linearized version of (2 .7) ,  
with perturbed shear profiles (2.19) and Y = 0, is easily derived as 

At < Ax/max I Ul. (2 .37)  

For the present class of flows, condition (2.37) leads to stable results even after 
times when the flow has become highly nonlinear. Note, from table 3, that (2 .37)  
is only marginally satisfied for runs 35 and 39. 

2.5. Flow visualization 

The results of our computations, namely u and p ,  are stored on magnetic tape 
and examined a t  selected time intervals, indicated in table 4. During the course 
of a computation we monitor the variation of global quantities. These include 
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energy, enstrophy and w,,, - urnin, quantities conserved by the inviscid Navier- 
Stokes equations. Energy is semi-conserved by scheme (2.7), so that variations 
in E for v = 0 result from the time discretization and round-off errors. 

At less frequent intervals, we ‘visualize ’ the u, p and w fields, together with the 
downstream modal energies Ek. Experimental measurements, such as those given 
by Sat0 (1960) and Sat0 & Kuriki (1961), customarily refer to time-averaged 

Print 
interval 
in time 

Run steps 

35 40 

38 100 

39 50 

34 20 

Available 
data in 

time 
steps 

20 

20 

25 

20 

Experiment 

Kuriki (1961) 

Kuriki (1961) 

Kuriki (1961) 

Sato & 

Sato & 

Sat0 & 

Sato (1960) 

Time 

stream interval 
steps = down- 

100 = 5.7 

100 = 5.7 

100 = 5.7 

100 = 12.3 

y = Cross- 
stream 

distance 
(=) 

1 = 1.14 

1 = 1.14 

1 = 1.14 

1 = 2.40 

TABLE 4. Available information and conversion to physical scales 

properties measured by a stationary probe. We compare these with cross-stream 
profiles obtained by averaging variables over a full period in the downstream (x) 
direction : 

(i) Mean longitudinal-velocity, 

(ii) Longitudinal-velocity fundamental and second harmonic amplitudes, 

where (2.39) is compared with Sat0 & Kuriki’s G4. 
(iii) Longitudinal-velocity phase, 

tanO,(y,t) = - Cum++,,sin(2nm/N,)/ CU,+$,,COS (27rm/N,). (2.40) 
m m 

In the following, we also normalize the phase 8, to zero at the lower boundary, 

el( -L,/2, t )  = 0, (2.41) 

in correspondence with the data of Sat0 & Kuriki (1961). 

examples are given below. 
Data are displayed using a Stromberg Datagraphics 4060 electronic processor; 

3. Evolution of a perturbed Gaussian profile (wake) 
Runs 35,38 and 39 of table 3 were made using the initial Gaussian profile (2.21). 

In  each case, the initial perturbation mode number is approximately the most 
unstable according to linear theory. The parameters U,, U,, and A correspond to 
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those measured by Sat0 & Kuriki at X = 30 mm downstream of a thin, 30 ern 
long, polished aluminium airfoil in a wind tunnel with a free-stream velocity of 
U, = 10msec-l. The variables u, 2, y, t ,  etc., are non-dimensionalized with U, 
and b, the measured wake half-width at X = 30 mm (b  = 1.14 mm). The Reynolds 
number R of run 39 (table 3) corresponds to the experimental, 

R = (bU,)/v = 750. (3.1) 

The corresponding R based on the airfoil length, in place of b, is 2 x lo6. The last 
two columns of table 4 give the comparison between dimensionless and experi- 
mental time and length scales. Taylor’s transformation, relating time intervals 
to downstream displacements of X, becomes 

X,-X1 = U,.(T2-T1) = b.(t,-t,), 

where (T2 - Tl) is the dimensional time interval. 
Runs 35 and 38 are similar except for changes in the lattice size and the level 

of theinitial perturbation, and the results obtained for each are similar. In  addition 
to a finite R, run 39 uses a larger Lv and a slightly smaller wave-number K for the 
initial perturbation. Note, however, that the linear exponentiation time 
t ,  = ( ~ c { ) - l  is approximately constant among these runs. 

3.1. Velocity, pressure and vorticity fields 

Figures 6-8 show the evolution of u, p and w for run 39. Figure 6 gives the initial 
and final wake defect velocity fields plotted at one-fourth the total number of 
lattice points. Line segments emanating from dots give the magnitude and sense 
of the velocity at the segment centres. The superposed heavy lines were added to 
the machine plots to bring out salient features. At t = 0, the wake occupies 15 % of 
the computational lattice; the sinusoidal perturbation u(l) is only barely evident. 
At t = 100 (2000 computation steps), the flow has evolved into a doubly periodic 
array of ‘elliptical’ vortices. Note that the flow remains confined to the central 
region. At late times, a ‘secondary’ pair of weak vortices appear near the upper 
and lower flow boundaries. For t > 40, the vortices translate to the right at about 
one longitudinal period per 10 time units. 

Figure 7 gives the corresponding constant pressure contours (the vertical array 
of ellipses at  the right will be discussed in 6 3.3). The nine pressure levels shown 
are equally spaced between the high ( H )  and low (L)  values of p .  At t = 100, the 
high-pressure regions have become comparatively flat plateaus, in which the 
primary vortex low-pressure regions are embedded. 

Figure 8 shows the evolution of lines of constant vorticity (2.18) for run 39. 
Nine levels are drawn in each figure between the positive or high ( H )  and negative 
or low (L)  vorticity points. From t = 20-60, the vortex lines stretch to form 
long filamentary regions. This feature is more evident in the inviscid run 35, 
and is consistent with the v = 0 vorticity equation (2.16), which conserves area 
between lines w = constant. The fragmented structure at  t = 40 represents the 
break-up of narrowing filaments due to the lack of spatial resolution. This struc- 
ture is more strongly evident in the inviscid runs 35 and 38; and, for these runs, 
the consequent loss of information probably results in numerical irreversibility. 
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For t = 60-100, the effect of viscosity is evident in figure 8: the vortices separate 
from one another, thus altering the original topological structure at  t = 0. Note 
the appearance of the more rapidly moving secondary vortices a t  t = 100 
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FIGURE 6. Velocity fields for a perturbed Gaussian profile (run 39) at times 
(a) t = 0, and ( b )  100. The free-stream velocity U,, has been removed. 
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(cf. figure 6). A more detailed examination of the evolution of vorticity contours 
reveals that the secondary vortices originate in the interior of the flow, and are 
swept out and formed on the flow extremities. At t = 40, we see the first definite 
signs of secondary vortices. 

Time steps 
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FIGURE 7. Constant pressure contours (9 levels, 8 contour lines) for a perturbed Gaussian 
profile (run 39) at (a) t = 0, and (b )  100 (one-mode Gaussian wake). The vertical array of 
ellipses shows the contour pattern surrounding the low pressure point in the lower half of 
the flow at intervals of 200 computation steps. The horizontal and vertical scales are the 
same as in figure 8. Note that they differ in such a way that the ellipses appear more 
elongated and have smaller inclination angles than in actnality. (See figure 11 (c).) 

3.2. Mean cross-stream features and comparison with experiment 

The first two columns of figure 9 show cross-stream distributions of the mean 
flow properties (2.38)-(2.40). The first column shows the short-time evolution 
from t = 0 to 12.5 (0 < t/tE < 1-34). At the latter time, the mean flow U(y, t )  
approximately agrees with measured data from Sat0 & Kuriki (1961) at 
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X = 40mm (open circles in column one). Over these times, the downstream 
velocity fundamental grows exponentially, in agreement with linear theory, as 
shown in column one of figure 9 ( b ) .  Experimental points for lull and luzl (on 
arbitrary vertical scales, not specified by Sat0 & Kuriki) are also shown in 
figures 9 ( b )  and 9 (c ) .  The main features of each are in agreement with the com- 
puted results. The initial development of the fundamental phase is shown 
in figure 9 (d). 

8 

v 

-8 

1 
0 8.38 

- 8  
0 8.38 

X 

FIGURE 8. Constant vortioity contours (9 levels) for a perturbed Gaussian 
profile (run 39) at times (a) 1 = 0, (b)  20, (c )  40, (d )  60, ( e )  80, (f) 100. 
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For times larger than tE, the flow evolution becomes fully nonlinear. Com- 
puted results at  selected times t = 35, 62.5 and 87.5 are shown in the second 
column of figure 9. The mean flow U(y , t )  spreads to approximately twice its 
initial width and rises to a maximum central value U, = U(0,  t )  = 0-683 at  t = 31. 

2n 
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Q- 0 

- n -  

-2n 

1 .5 

1 .o 

0.5 
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(4 

0.150 

- 
$ 0.075 
- 

0 

This compares with the experimental maximum of U, = 0.84 (Sato & Kuriki 
1961, figure 28). Thus, although the curves resemble one another they disagree in 
magnitude. This small discrepancy is probably due to our restriction on the 
largest scale available to the flow for longitudinal evolution. That is, if we had 
a consistent method for allowing L, to increase (possibly associating it with 

24 P L M  47 
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estimated or experimental information on the evolution of longitudinal gradients), 
then the flow would spread downstream, and U, would increase. U, then decreases; 
and, at  t = 44, U develops an ‘overshoot’ at the outer edges of the wake. The 
latter is anobservedproperty of the Sat0 &Kuriki experiment (1961,figures 2 , 2 2 ) ,  

0.14 

0 

0 25 50 75 100 

t 

FIGURE 10. Evolution of mean features for the Gaussian wake (runs 35,39). Run 35 has a 
stronger initial perturbation; its time scale has been shifted for clarity by 6 units. -, 
R = 750; - - -, co. (a) Centre line mean longitudinal velocity. (b )  Longitudinal velocity 
fundamental (maximum amplitude) (i), and second harmonic (centre line amplitude) 
(ii), (c) Energy and mean square vorticity: (i) E/E,=,; (ii) ( w ~ ) / ( w ~ ) ~ _ , , .  

shown in the third column of figure 9 (a). This phenomenon is simply the result 
of primary vortex circulation at the lateral flow extremities, seen in figure 6(b). 
The overshoot reaches a maximum of U = 1-039 at  t = 61, and shortly afterwards 
U again begins to increase. The complete time evolution of U, for run 39 is shown 
in figure 10 (a). 



Two-dimensional unstable shear jlows 371 

The corresponding nonlinear development of lu,(y, t)I is shown in figure 9(b). 
The experimenta,l data in column three has the same vertical normalization as 
that in column one. The experimental data at X ,  = 120 and X, = 150mm show 
off-axis nulls at  y = & 2, as do the computed results at times t ,  = 62.5 and 
t, = 87.5. The corresponding relation between X and t is in good agreement 
with the Taylor transform (3.2). The computational results show, moreover, 
that these nulls in lull are a nearly periodic occurrence. We will return to a 
discussion of this long-time periodicity in $3.3. As in the case with U, the 
experimental amplitudes of lull show quantitative differences from the computed 
results. 

Columns two and three of figures 9(c) and 9(d) show similar comparisons 
between computed and experimental values of Iu,(y, t)l and 8,(y, t ) .  The experi- 
mentd luzl are somewhat inaccurate, as stated by Sat0 & Kuriki. The comparison 
for 8, is quite good. 

Figure 10 gives the time development of U(0, t ) ,  maxy [ u,(y, t )  I and Iu,(O, t )  1, 
for run 39, and compares the results with those of the inviscid run 35. For clarity, 
the t = 0 ordinate of run 35 has been shifted to the right by 6 units, to compensate 
for an initially stronger velocity perturbation (table 2). Because of aliasing errors, 
we terminated this run sooner than the others. Note that the qualitative features 
of the results are unchanged: the main effects are inviscid. 

Figure lO(c) gives the time evolution of E and (u2) for run 39. Note that 
viscosity decreases the defect velocity energy by only 10% during this 
computation. 

3.3. A new temporal subharmonic frequency 

Figure 1 1 summarizes time-dependent properties of the constant pressure 
contours of run 39 (cf. figure 7). The vortex position and longitudinal velocity in 
figures 11 (b) ,  (c) are obtained by following the pressure lows (A) of the primary 
vortices. The initial motion of the vortices is governed by linear theory, as shown 
in figure 11 (c). The linear wave-speed c, indicated there is that of run 39 given 
in table 1. 

After a short transition time, the primary vortices reach an approximate 
equilibrium configuration, centred at  y = ? 1 and moving with constant velocity 
c, = 0.83. Note from figure 11 ( b )  that the non-dimensional wake half-width b(t), 
defined from U(b, t )  = U(0, t)/2, is approximately twice its initial value over 
these late times, This agrees with the data of Sato & Kuriki. The vortex separa- 
tion ratio at t = 100 is 

(transverse distance/longitudinal distance) = 0.24, (3.3) 

where the distances are measured between low-pressure features. 
We assert that many of the detailed properties observed in the computed and 

experimental results of figure 9 are explained by a slow ‘nutation’ of the elliptical 
primary vortices with respect to the horizontal. This effect is seen on the right of 
figure 7. Here, we isolate the contour lines surrounding the low-pressure point of 
the lower primary vortex, and focus attention on the angle of inclination to the 
horizontal made by the major axes of these contours. The time evolution of this 

24-2 
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angle is indicated by the solid curve in figure 11 (a). After the initial transition 
time, the vortex angle possesses a, long-time quasi-periodicity with approximate 

(3.4) frequency j” 2: 0.16Uo/L, = 0*030~,,,~,. 

Y 

! 

cr 

0.5 
0 25 50 75 100 

t 

FIGURE 11. Temporal properties of the primary vortices for the Gaussian wake (runs 35, 
39). -, R = 750; - - - , ,  00-  ---.-, linear wave speed. (a) Vortex inclination angle 
and velocity fundamental total lateral phase change (i). (6) Upper vortex transverse 
position (i), and wake half-width (ii). (c) Vortex longitudinal speed c, compared with 
linear theory. 

Here U, is the free-stream velocity at  infinity, L, is the longitudinal interval 
occupied by a primary vortex pair moving with velocity c,, and K~~~ is the 
linearly most unstable wave-number. The nutation frequency is only weakly 
dependent on viscosity, as seen from the superposed results of runs 35 and 39 in 
figure l l ( a ) .  The nutating ellipse is also evident in the vorticity contours of 
figure 8. 
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The solid, horizontal-vertical curve in figure 11 (a )  gives the time evolution of 
the total lateral phase change, 

(3.5) 
Note that (3.5) experiences an abrupt change of 2n whenever off axis nulls of lull 
appear in figure 9 ( b ) .  From figure 11 (a )  we see that phase reversal occurs whenever 
the elliptical primary vortex becomes aligned with the free-stream flow direction. 

4( - LJ2, t )  - w , / 2 ,  t ) .  

t 

FIGURE 12. Downstream modal energy variations Ek(t ) /E( t )  for the 
Gaussian wake (runs 35, 39). -, R = 750; - - -, CO. 

3.4. Large wave-number spectral properties 
Figure 12 gives the time evolution of the normalized modal energies E,/E 
(equations (2.33)-(2.35)) plotted on a log scale, for runs 39 and 35, with the time 
axis shifted by 6 units as before. The curves are labelled according to mode 
number k = 0,1, . . . . It is evident that in both the viscous and inviscid cases the 
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energy in the first few harmonics shows a nearly periodic variation at  the nutation 
frequency fN. 

This result demonstrates that indiscriminate application of Landau's con- 
jecture (Landau 1944) can lead to false conclusions regarding asymptotic pro- 
perties of solutions. Our results suggest that an expansion which retains three 
longitudinal modes ( k  = 0, 1 and 2) and two transverse modes (k = 1 and 2) 
should adequately describe the dynamics. However, in the corresponding first- 
order ordinary differential equations for complex mode amplitudes, one must 
allow for self-consistent, or time-varying coefficients (cf. Eckhaus 1965, chs. 2, 3, 
esp. (2.7.3)-(2.7.5)), since the mean flow and fundamental exchange energy in 
a nearly periodic manner after the linear growth rdgime. 
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z.I e 
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t 

FIGURE 13. Energy and enstrophy variations for the inviscid Gaussian wake (run 35). 
(i) (E/Et=,) - 1 ; (4 ( ( o ~ ) / ( w ~ ) ~ = ~ )  - 1. 

Figure 12 also shows that even in the inviscid case, all but a fraction of a per 
cent of the total energy E resides in modes 0, 1 and 2. The numerical integrity 
of the inviscid run 35 is shown in figure 13. The variation of total energy 
[(E/Et=,) - 13 remains somewhat less than the variation of mean-square 
vorticity [ ( ( W ~ ) / ( W ~ ) ~ = , )  - 11 remains of order of 1 yo, except for the final portion 
of the calculation, where variations of order 7 yo are observed. Note that t = 0 
on this figure corresponds to t = 6 on figures 11 and 12. 

Figure 14 shows the time variation of log-log plots of the downstream modal 
energy spectrum Ek versus k + 1. These results are relevant to the two-dimensional 
theories of homogeneous, isotropic turbulence; they are also a prediction of 
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spectra for high Reynolds number, incompressible wake experiments, as yet to 
be performed. Batchelor (1969) has argued on dimensional grounds that high 
Reynolds number, two-dimensional, homogeneous and isotropic flows should 
develop an inertial range of mode numbers k, for which 

Ek N k-fi (p = 3). (3.6) 

64 

Downstream mode number (k) 
FIGURE 14. Downstream modal energy spectra for the Gaussian wake (runs 35, 39). 
0, t = 0; +, 30; 0 ,  60; x ,  100. (a )  R = 750, ( b )  00, ((i) (ii) (k+l)-*). 

In  the appendix, Q(ii), we discuss the relation between Ek(t) and the more 
commonly dehed  energy spectrum function E(K, t )  from the continuum theory 
of two-dimensional isotropic turbulence (Batchelor 1969). If we assume that 
isotropy is a good approximation for large mode numbers after a few exponentia- 
tion times, then from figure 14 (a)  it  is evident that R = 750 is still too small for 
(3.6) to hold. Figure 14 (b )  shows the corresponding evolution with v = 0 (run 35). 
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After about one exponentiation time t,, modes larger than 7c = 4 develop a fairly 
stationary equilibrium spectrum of the form (3.6), where 3 < p < 4. Note that, 
to the final time shown, t = 60 (6.44 exponentiation times), the largest mode 
numbers begin to  show the effects of cumulative numerical aliasing. That is, 
the apparent lc-3 spectrum at mid-range wave-numbers in figure l4(b), t = 100 
is due to the ‘unphysical’ feedback of energy from the high-to-low end of the 
spectrum. 

These results are to be compared with the numerical computations of Lilly 
(1969). He studied a driven viscous fluid in two dimensions on a coarser lattice 
(64 x 64 compared to our 128 x 128). He observed a spectrum? approximately k3. 
Our spectrum falls off more rapidly, that is p is closer to 4. 

4. Development of subharmonics in the evolution of a Bickely profile 
In  5 2 we noted that the downstream periodic boundary conditions limit the 

smallest wave-number that can develop in the flow. In runs 35, 38 and 39, 
relation (2.29) was only marginally satisfied, so that subharmonics of K,,, do not 
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FIGURE 15. Five-mode-perturbed Bickely profile (run 34). (a )  Pressure contours, t = 0 ;  
(b )  18; (c) 30; (d) Downstream modal energy spectra. 0, t = 0; x ,  18; 0 ,  30. (i) ( k+  l)-3; 
(ii) ( k  + l)-4. Mode 3 is the most unstable. 
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exist. In  $ 4  we study effects of the presence of subharmonics on the long-time 
flow development. 

Run 34 of table 3 was made using the Bickely ‘jet’ profile (2.22) perturbed 
with five unstable modes, as indicated in figure 4 (a).  In  addition to the central, 
most unstable mode K~~~ = 0.9, we perturb subharmonics K = 0.3 and 0.6, 
together with harmonics K = 1.2 and 1-5. The perturbing modes were equally 
excited at  t = 0, where from table 2, E,/E = 0.00296, k = 1, . .., 5. The Reynolds 
number was infinite. 

Figure 15 summarizes the flow development up to a time t/tE = 4.83, where tE is 
the linear exponentiation time of the fastest growing mode (k = 3). The constant 
pressure contours between figures 15 (a)  and (c) reveal an effect absent in previous 
sections, namely, the gradual merging of smaller into larger vortices. This effect 
is seen more clearly in figure 15 (d), which gives the corresponding development 
of the modal energies. At t = 0, the five equally excited modes together with the 
mean, or lc = 0 mode are indicated by open circles. At t = 18 the k = 3 (most 
unstable) mode dominates the remaining modes k > 0, as one would expect from 
linear theory. However, by t = 30 we note a large increase in the energy content 
of the k = 1 subharmonic, as a result of the gradual merging of smaller vortices 
(Batchelor 1953). 

Figure 15 (d )  again shows that the higher harmonics for invjscid flows evolve 
into an approximate equilibrium of the form (3.6), 3 < p < 4. 

5. Conclusions 
Direct numerical integration of the incompressible Navier-Stokes equations 

provides a t  present the most reliable means for studying the evolution of two- 
dimensional shear flows. It also provides a means for evaluating analytical 
hypotheses about these flows made in the past. In  the present work we have used 
a very high resolution lattice (128 x 128 points) to study the dynamical evolution 
of a perturbed Gaussian wake. Except for very short times, essentially those 
where linear theory is valid, we find no support for the usual boundary-layer 
approximation, that the ratio of longitudinal to transverse flow derivatives 
should remain small, according to 

(5.1) a,p, = o(R-~)  Q 1 

(KO, Kubota & Less 1970). This is due to the formation of elliptical vortex pairs, 
whose origin is basically an inviscid phenomenon. After approximately two 
exponentiation times of the linearly most unstable mode, the flow evolves in 
a quasi-periodic manner, seen as a slow nutation of elliptical vortices with 
respect to the downstream direction and undoubtedly the result of an interaction 
between the mean flow and the vortex states. This subharmonic frequency should 
be sought experimentally, and elucidated theoretically. The numerical results 
indicate that viscosity and downstream harmonics higher than the second play 
a negligible role in this phenomenon. For zero viscosity we also predict, after 
moderate times, that the energy spectrum behaves as k - p ,  where 3 < p < 4. 
A more precise value of p can be determined by studies with more refined meshes. 
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Appendix 
(i) Solution of the eigenvalue problem (2.26) 

The solution of (2.26) for symmetric eigenfunctions of periodic mean profiles 
(2.25) is accomplished using a search procedure for the eigenvalue G. For given K,  

c is assumed to lie in a given (sufficiently large) square B0) in the complex c plane. 
The one-point boundary-value problem for (2.26) with 

$ ( O )  = 1, $'(O) = 0 (A 1) 

is then solved successively on a uniformly spaced lattice of c values subdividing 
H0) (usually 10 x 10 intervals). A fourth-order predictor-corrector scheme with 
relative accuracy was used for the results of 52.2. The lattice value of 
c which minimizes l$'(Lv/2)I provides a first guess c(l) for the eigenvalue c. The 
above procedure is then repeated on a smaller square R(l) surrounding c(1), and 
this search is refined until the sequence converges with relative accuracy 10-5. 
Antisymmetric eigenfunctions can be similarly computed from the two-point 
boundary-value problem (2.26) with 

$' (O)  = 1, $ ( O )  = $(L,/2) = 0. (A 2) 

(ii) The relation between Ek and the energy spectrum 
function of continuum turbulence theory 

The discrete longitudinal modal energies ek (2.33) are related to the energy 
spectrum E ( K )  in the theory of two-dimensional, homogeneous and isotropic 
turbulence (Batchelor 1969). Assume that u(x, y) is a spatially homogeneous and 
isotropic velocity field defined everywhere in (x, y) space. We can regard ek as 
a discrete analogue to 

Here, K denotes a continuous, scalar wave-number. The quantity in brackets 
depends only on r, using the spatial homogeneity of u. We have normalized S in 
a manner analogous to (2.36) 

P m  

The two-dimensional energy spectrum function E can be defined from 
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where Jo is the zeroth-order Bessel function. The relation between E and AS' follows 
after substituting (A 5 )  into (A 3): 

Relation (A 6) shows that, if E ( K )  is a power law 

E ( K )  K-p ( p  > O ) ,  

then X(K) retains the same power law form. 
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